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Abstract.

Tropical cyclones (TCs) are one of the most devastating natural disasters, which justifies monitoring and prediction on

short and long timescales in the context of a changing climate. In this study, we have adapted and tested a convolutional

neural network for the classification of reanalysis outputs according to the presence or absence of TCs. We use a number of

meteorological variables to form TC-containing and background images from both the ERA5 and MERRA-2 reanalyses. The5

presence of TCs is labelled from the HURDAT2 dataset. Special attention was paid on the design of the background image

set to make sure it samples similar location and time to the TC-containing image. We have assessed the performance of the

CNN using accuracy but also the more objective AUC and AUPRC metrics. Many failed classifications can be explained by the

meteorological context, such as a situation with cyclonic activity but not yet classified as TC by HURDAT2. We also tested the

impact of interpolation and of “mix and match” the training and test image sets on the performance of the CNN. We showed10

that applying an ERA5-trained CNN on MERRA-2 images works better than applying a MERRA-2 trained CNN on ERA5

images.

1 Introduction

Tropical cyclones (TCs) represent a major hazard for life and property in exposed regions of the world. There are still many

unanswered questions on the number, intensity, duration, trajectory and probability of landfall of tropical cyclones in a warming15

climate (Emanuel, 2005; Webster et al., 2005; Chan, 2006; Vecchi et al., 2019; IPCC, 2021; Wu et al., 2022). IPCC (2021)

estimated that “it is likely that the global proportion of major (Category 3–5) tropical cyclone occurrence has increased over

the last four decades” but “there is low confidence in long-term (multi-decadal to centennial) trends in the frequency of all-

category tropical cyclones”. It has also been shown that global warming cause TCs to move further north in the North Atlantic

and North Pacific basins (Kossin et al., 2014; IPCC, 2021; Studholme et al., 2021), which could have dire consequences for20

some coastal cities.

Better modelling of TCs in climate models is a prerequisite to estimate changes in associated damages. Better projections

of the changes in TCs also require an understanding of the respective roles of decadal variability and climate trends. The

automatic detection of TCs in climate model outputs is central to our ability to analyze results from climate projections. Indeed
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TCs can only be simulated in models with sufficient horizontal and vertical resolutions (Knutson et al., 2015; Vecchi et al.,25

2019; Roberts et al., 2020; Jiaxiang et al., 2020) and such models produce huge volumes of output data. Thus it is important

to have the capability to analyze such datasets in an efficient manner. While climate data are first produced and then analyzed,

the climate modelling community is also moving in the direction of “on-the-fly” (also called in situ) data analysis in order to

reduce the volume of data to be stored and the environmental impacts of such storage.

Climate modellers have developed “physical algorithms” to detect TCs based on the translation of their physical characteris-30

tics into identification criteria (e.g., Walsh et al., 2007; Horn et al., 2014; Bosler et al., 2016; Singh et al., 2022). Such detection

algorithms generally rely on the identification of a spatial feature typical of a TC at all available time steps and a temporal

correlation procedure to track the time consistency of the detected features and establish a trajectory. They are usually applied

in predefined regions prone to TCs though it is not unusual for a TC to move outside its natural domain, hence it is important to

apply the algorithms on a larger domain. These physical algorithms require to set up a number of thresholds which may depend35

on the climate model being considered and its resolution. For example, in the Stride Search algorithm (Bosler et al., 2016), a

TC is identified if four criteria are met: maximum vorticity above a threshold, distance between the gridpoints of maximum

vorticity and minimum sea level pressure below a threshold, the presence of a maximum vertically averaged temperature larger

than its environment, and distance between the gridpoints of maximum vertically averaged temperature and minimum sea level

pressure below a threshold.40

There is also a wealth of studies on the detection of TCs in satellite imagery, reanalysis and climate model outputs based on

machine learning (ML) approaches (Liu et al., 2016; Park et al., 2016; Kurth et al., 2017; Hong et al., 2017; Kim et al., 2019).

This is not surprising because TCs have very distinct features which make them relatively easy to detect with convolutional

neural networks (CNN). This is part of a much larger trend to use ML approaches for object detection in meteorological

images (e.g., Ebert-Uphoff and Hilburn, 2020) and climate model data (e.g., Matsuoka et al., 2018). This later work focuses45

on the detection of cyclones using a CNN image classifier which operates on sliding window of output from Nonhydrostatic

Icosahedral Atmospheric Model (NICAM) and studies system performance in terms of detectability. Most approaches for TC

detection use supervised methods which require a training dataset. While such techniques are now mainstream, they are not

always well documented and their description may lack sufficient details which are often key in ML. Studies evaluating the

performance and sensitivity of TC detection algorithms to the input and training datasets are also relatively scarce. It should50

be noted that TC datasets exist for the past observed climate record (satellite data, reanalysis) but it may not be practical to

generate such datasets in climate model outputs for every new simulation that is made and to which the detection algorithm

is to be applied. Thus it is important to understand how a supervised method may depend on the training dataset if it is to be

applied to a dataset of a slightly different nature.

In this context and for the above-mentioned reasons, we have developed in this study a detailed procedure for building55

training datasets and testing the performance of the TC detection algorithm to some of its parameters. In Section 1, we present

the data used to generate the images to be classified. Then in Section 2, we explain the architecture of the classification model,

its training, the evaluation method to assess its performances, as well as the processes for generating the images to be classified.

In Section 3, we present the results of our experiments in terms of accuracy and the other evaluation metrics. We further present
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an investigation on misclassified images and some suggestions for future work. Finally we summarize our contribution in the60

last section.

2 Data

2.1 TC dataset

Several datasets of TCs exist: we can flag here ExtremeWeather (Racah et al., 2017), ClimateNet (Prabhat et al., 2020), and

the International Best Track Archive for Climate Stewardship (IBTrACS, Knapp et al., 2010, and references therein). In this65

study we use the North Atlantic National Hurricane Centre (NHC) “best track” hurricane database (HURDAT2; available from

www.nhc.noaa.gov/data/#hurdat; Landsea and Franklin, 2013) because it is known as a high quality dataset for the North

Atlantic basin. Quality and quantity of the training dataset are essential for the accuracy and performance of the ML model. In

particular it is important for the dataset to be comprehensive (i.e., there is no missed TC) and homogeneous (i.e., the criteria

for deciding if a feature qualifies as a TC are used consistently in space and time). The HURDAT2 dataset is reputed to70

be comprehensive for the period after 1970 (Landsea et al., 2010). It is more difficult however to ascertain its homogeneity

especially for short duration TC.

HURDAT2 contains six-hourly (0, 6,12, 18 UTC) information on the location, maximum winds, central sea level pressure,

and (since 2004) size of all known tropical cyclones and subtropical cyclones. The intensity of the TC are categorized into

several categories, as shown in the Table A1 in the Appendix. We consider the HU and TS categories as being TCs and the75

other categories (including tropical depressions) as not being TCs.

2.2 Meteorological reanalyses

We use two different reanalyses upon which we train and apply our CNN. The ECMWF Reanaysis 5th generation (ERA5) is

the current atmospheric reanalysis from the European Centre for Medium-Range Weather Forecasts (Hersbach et al., 2020).

The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) is the current atmospheric80

reanalysis produced by NASA Global Modeling and Assimilation Office (Gelaro et al., 2017). These two reanalyses differ in

the atmospheric models used, the range of data being assimilated, and the details of the assimilation scheme. They also differ

in their spatial resolution. ERA5 is retrieved from the ECMWF archive at a resolution of 0.25◦×0.25◦ while MERRA-2 is

provided at a resolution of 0.5◦×0.6◦. The atmospheric variables relevant to TC detection are available in both reanalyses

(as proposed by Liu et al. (2016)). We use fields of sea level pressure, the two components of the wind, temperature and85

precipitable water vapor (see Table A2 in the Appendix).
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Table 1. The layers of our CNN. The convolutional layer parameter are denoted as <filter size>−<number of filters>. The pooling layer

parameters are denoted as <pooling frame>. The fully connected layer parameters are denoted as <number of neurons>. For the activation

function of the neurons, “relu” stands for the rectified linear unit whereas “sigmoid” stands for the logistic sigmoid function. Output tensor

shapes are also provided for each layer of the CNN for input images of size (16,16,8) and (32,32,8). The number of trainable parameters are

5,053 for images of 16×16 px and 30,653 for images of 32×32 px.

Layer type Parameters Activation Output tensor shape Output tensor shape

for image of 16×16 px for image of 32×32 px

convolutional 3×3−8 relu 14, 14, 8 30, 30, 8

pooling 2×2 - 7, 7, 8 15, 15, 8

convolutional 3×3−16 relu 5, 5, 16 13, 13, 16

pooling 2×2 - 2, 2, 16 6, 6, 16

flattening - - 64 576

dense 50 relu 50 50

dense 1 sigmoid 1 1

3 Methods

3.1 Classification model

In this study we implemented a binary classifier of cyclone images based on the work of Liu et al. (2016), with slight modifica-

tions. Table 1 shows the architecture of our CNN which is divided into two parts: a feature extraction part and a classification90

part. The feature extraction part is composed of the convolution layers whose filters are responsible for the extraction of fea-

tures of cyclone present in the input images of the CNN. These features are the basic elements used for the classification of

the images, implemented by the dense layers, and determine if the images represent cyclones or not, usually by outputting

probabilities. As noted by Liu et al. (2016), using a shallow convolutional neural network is relevant for a relatively small

number of images in the training dataset because the network only has a small number of parameters to train.95

Our modifications compared to the work of Liu et al., concern the size of the convolutional filters and the number of neurons

in the last dense layer. The characteristics of their CNN are described in Table 2. Indeed, our convolutional filters are smaller:

3×3 instead of 5×5 for Liu et al. We thought that smaller filters are able to capture better the features of cyclones on small

images, especially for the 16×16 pixels (px) images. In addition, 3×3 filters are more conventional now. Note that the number

of trainable parameters are very much the same between our CNN and that of Liu et al.. Lastly, Liu et al. describe a final layer100

with two neurons using the logistic sigmoid activation function. So this layer outputs two probabilities: the probability that the

input image represents a TC and the probability that the image represents the background, but the outputs are not correlated

and the sum of the probabilities can be larger than one. In this study, we use the conventional approach of binary classification
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Table 2. The layers of the CNN by Liu et al. for comparison with ours. This Table follows the same syntax as Table 1. The number of

trainable parameters are 5,776 for images of 16×16 px and 24,976 for images of 32×32 px.

Layer type Parameters Activation Output tensor shape Output tensor shape

for image of 16×16 px for image of 32×32 px

convolutional 5×5−8 relu 12, 12, 8 28, 28, 8

pooling 2×2 - 6, 6, 8 14, 14, 8

convolutional 5×5−16 relu 2, 2, 16 10, 10, 16

pooling 2×2 - 1, 1, 16 5, 5, 16

flattening - - 16 400

dense 50 relu 50 50

dense 2 sigmoid 2 2

by considering one output neuron activated by a sigmoid function. So a probability value that tends to zero classifies an image

as background while a value that tends to one classifies an image as cyclone.105

By construction, the size and the number of channels of the input images in a CNN are fixed. Using different image sizes

and/or numbers of channels would require modifying the network architecture and retraining it. Indeed the properties of the

dense layers of the network depend on the image shape (i.e., the number of neurons). Thus, image classification using a CNN

implies the production of training and testing datasets of a given shape, irrespectively of the atmospheric reanalyses, ERA5

or MERRA-2, being considered. In our study, the size of the images is 32×32 px or 16×16 px with the eight variables as the110

channels of the image (3D tensor). Of course, the channels must correspond to the same atmospheric fields in the same units

across the two reanalyses and must be arranged in the same order. The next section explains how we tackled the production of

a homogeneous dataset.

3.2 Image preparation

3.2.1 Principles115

The training of a CNN classifier is based on the optimization of its parameters using gradient descent and backpropagation

techniques. Roughly speaking, the training process presents a batch of images as an input to the CNN. The training process

modifies the parameters of the CNN in order to improve the classification of the batch, according to a chosen loss function. For

a binary classifier, this process implies the presentation of images containing a TC, but also images not containing a TC, called

background images. We now explain the data engineering involved in selecting both TC-containing and background images120

using the HURDAT2 dataset of cyclone tracks and the ERA5 and MERRA-2 reanalyses.
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Figure 1. (a) Counts of TC-containing images per 1◦×1◦ gridbox. (b) Histogram of the count of TC-containing images according to the

month of the year. (a) and (b) are computed over the period 1980-2019.

3.2.2 TC-containing image generator

The HURDAT2 dataset provides locations and dates of TCs as part of the cyclone metadata. We create images centered on the

cyclone positions in the reanalysis for the dates indicated in HURDAT2. The different channels of the images consist of the

selected variables from the reanalyses as discussed above. We consider all cyclones with HU and TS status (see Table A1) that125

are located over the ocean, islands and coasts, over the period 1980-2019. Most TCs are found during the Atlantic hurricane

season from May to December but we also consider a few events identified by HURDAT2 as TCs outside these months.

Figure 1 shows the spatial and temporal distributions of the TC-containing images.

3.2.3 Background image metadata generator

Extracting background images requires some thought because the performance of the CNN depends on those and whether they130

sample the diversity of TC-free situations. The idea here is to reuse the HURDAT2 database so that, for each location and

date with a TC, we choose two dates in the past where no TC is present. We also check that the date was not already selected

as the TC-free situation for another TC-containing image, so that all background images are distinct to each other. Once the

dates are selected, we can extract the corresponding images. Figure 2 shows a Unified Modeling Language version 2 (UML2)

activity diagram of the background image metadata generator and specifically how we compute the two dates from each date135

of a TC track. The first date is computed by subtracting between 48 and 168 hours randomly (2-7 days) to the date of the TC

track to generate the first date, and between 336 and 504 hours to generate the second date (2-3 weeks). Then the algorithm

checks if each computed date leads to a background image that is in the immediate vicinity of any other TC track (status HU

or TS as before) within a 48 hours time frame in the past or in the future, or to an already selected background image within

a 12 hours time frame. If this is the case, we iterate by subtracting from the faulty date either 54 hours (48+time resolution) if140
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Figure 2. UML2 activity diagram of the background image metadata generator.

the background metadata intersects a cyclone track or 18 hours (12 + time resolution) if it intersects another background image

metadata.

Overall our background image metadata generator has the following advantages:

– our background images do not include a TC by construction;
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– the meteorological, geographical and temporal contexts of the background images are close to those of the TC-containing145

images generated on the basis of the HURDAT2 data. In this way, we hope to better train the model at the classification

decision boundaries;

– the ratio of background over TC-containing images is constant by construction (with a third TC-containing images and

two thirds background images);

– the background images cannot be within 48 hours from a cyclone image and 12 hours from another background image,150

considering the geographical domain.

As a result of our image metadata generator, we obtain 9507 cyclone metadata and 19014 background metadata. The coor-

dinates (longitude and latitude) of the cyclone and background metadata are then rounded to the respective resolutions of the

ERA5 and MERRA-2 datasets, which results in two batches of metadata. Finally, we perform an additional step to check that

no duplicate is created during the coordinate rounding.155

3.2.4 NXTensor software library

The production of the image sets was the opportunity to create a reusable software library called NXTensor. This library is

written in the Python 3.7 programming language and automates the extraction of geospatialized data, stored in NetCDF format,

in a distributed and parallelized way on a computer cluster scheduled by Torque/Maui. Indeed each channel of the images is

produced by a task of the cluster (multitasking) and the extractions are performed in parallel (multiprocessing). The library160

ensures the determinism of the data extractions and it is reusable for other experiments than ours, because the parameters of

the extractions are entirely configurable through yaml files. NXTensor takes as parameters the description files of the variables

(path on the disk, naming conventions of the files, etc.), notably the period covered by the NetCDF files (e.g., ERA5 files are

monthly while MERRA-2 files are daily), and the image metadata (date and location).

Figure 3 illustrates the step-by-step operation of NXTensor according to the UML2 activity diagram formalism, for the165

production of one of the channels of all the cyclone and background images. NXTensor starts by analyzing the image metadata

to group them according to the period of the variable files to ensure that the files are only read once by distributed task. This

analysis produces the block metadata, i.e., the set of data extractions to be performed by period. Then NXTensor submits

as many tasks to the cluster as there are channels, the determinism is ensured by sharing the same block metadata between

the different distributed tasks. Within each task, the block metadata is divided into batches that are processed by a pool of170

workers performing the extractions of data in parallel. Each worker produces a set of blocks that are combined at the end by

concatenation to form one of the channels of all the images. A special task is responsible for assembling the channels of the

images in order to produce the 3D image tensor as mentioned above. For information, the elapsed time to extract a channel

for 28,521 images is about six minutes when the computations are carried out on the CPU cluster of the Institut Pierre-Simon

Laplace (IPSL), using eight nodes (15 Go RAM and 15 cores AMD Opteron™ 6378 at 2.4 GHz). The channel assembly task175

takes about one minute. The CPU time was 135 minutes.
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Figure 3. UML2 activity diagram of the image extractions using the NXTensor library.

3.2.5 Missing values issue

When generating images from the MERRA-2 data, we found that some of them had missing values (NaN), especially from the

winds at 850 hPa. We decided to remove the metadata that resulted in incomplete images, for both the MERRA-2 and ERA5

batches, so that the batches of metadata are still identical. This resulted in the removal of 1,567 of them. Thus the number of180

cyclone metadata is 8,974 and the number of background metadata is 17,980, which gives a total of 26,954. With this final

screening, we could then proceed to the extraction of the images.

3.2.6 Image interpolation

Previously we have detailed the automatic production chain of constant-shape images to satisfy the constraints of the CNN.

However, as mentioned above, the ERA5 and MERRA-2 reanalyses do not have the same spatial resolution (0.25◦ versus185

0.5◦). In order for the images to represent a constant domain size, and thus include cyclone of the same size as a fraction of the

image domain size, we extract native images of 16×16 px for MERRA-2 and 32×32 px for ERA5 as described in Table 3. We

then symmetrize the MERRA-2 native image set at a resolution of 0.5◦×0.5◦ by linear interpolation to obtain the MERRA-2
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Table 3. Properties of the image sets. MERRA-2 native is used to construct the other two MERRA-2 image sets but is not used as input to

the CNN.

Image set Size (in pixel) Resolution (in ◦)

ERA5 native 32×32 0.25×0.25

ERA5 16px@0.5 16×16 0.5×0.5

MERRA-2 native 16×16 0.5×0.6

MERRA-2 16px@0.5 16×16 0.5×0.5

MERRA-2 32px@0.25 32×32 0.25×0.25

16px@0.5 image set. To resolve the difference in resolution and to study the sensitivity of the CNN to the different datasets,

we further transform by linear interpolation one of the image sets to the properties of the other set (image resolution and size).190

Thus, we have two pairs of two image sets with similar properties: on the one hand ERA5 native and MERRA-2 32px@0.25

and on the other hand ERA5 16px@0.5 and MERRA-2 16px@0.5 (Table 3).

Figures 4 and 5 illustrate the representations of the channels of a cyclone and a background image, respectively, for the five

image sets, at a same localization but for two different dates. It can be verified visually that the domain and pattern sizes of the

images are independent of the choice of resolution. Finally, the input layer of the CNN is adapted dynamically to the size of195

the images during its instantiation, at the training phase which is described in the next section.

3.3 Model training

We performed our model training experiments on HAL, a Dell GPU cluster available at the IPSL. Each of HAL computing

node is composed of two 2.6 Ghz Intel® Xeon® with four cores and two Nvidia® RTX® 2080 Ti 11 Go GPU cards but

only one card was used for our training experiments. On the software side, the model is implemented in Python 3.8, using200

the Keras 2.3.0 library which is a layer build on top of the Tensorflow 2.2.0 library, making it simpler to use. In order to

automatically avoid overfitting, we used two Tensorflow callbacks: early stopping and model check point. The first callback

stops the training after N epoch without improving the training metric so the overfitting is prevented. The second callback

always saves the weights of the model giving the best score of the training metric. As the number of epochs varies from one

training to another (30 to 70), the training time also varies: between one and three minutes, knowing that one epoch takes205

less than one second of computation. Since training times are relatively short on our GPU cluster, we performed grid search

hyperparameter optimization to maximize the score of the training metric, using conventional hyperparameter value ranges

(the number of combinations of the search space is 48). The obtained values, described in the Table A3 in Appendix, are used

for all experiments to avoid attributing the variability of the studied metrics to hyperparameter changes. These metrics and the

methods for evaluating them are the subject of the next section.210
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Figure 4. Channels (left to right) of the cyclone image on 22 August 1987, 00:00 UTC centered on 35.5◦N, 43.125◦W. The different rows

show the native and interpolated images from ERA5 and MERRA-2 as per the labels.

3.4 Evaluation of metrics

In our study, we used three classical metrics to measure the performance of our binary classification model: accuracy, the Area

Under the receiver operating Characteristic (AUC) and the Area Under the Precision-Recall Curve (AUPRC). The equations

of the binary classification metrics are given in Appendix B1. The accuracy measures the rate of good predictions of a model.

It is an easy metric to interpret, but it depends on the decision threshold for which the value of a probability is associated with215

one class rather than the other. It was criticized in particular by Provost et al. (1997) and Ling et al. (2003) and we discuss

it further in section 4.1. The AUC measures the power of a model to discriminate the two classes for a variety of decision

threshold values (recall versus false alarm ratio), while the AUPRC measures the ability of a model to identify all occurrences

of a class (recall) while minimizing prediction errors (precision). AUC and AUPRC are much more interesting because they

are integrated on the decision threshold values.220
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Figure 5. Same as Fig. 4 but for the background image on 6 August 1987, 18:00 UTC centered on 35.5◦N, 43.125◦W.

The hold-out validation is the classic method for evaluating the metrics. It consists in shuffling the dataset and randomly

partitioning the dataset into two asymmetric sets (typically 80/20 or 70/30 as in our study). The model is trained on the larger of

the two sets and its performance is computed on the other. This method is simple, but the performances obtained are dependent

on the composition of the datasets. The more dissimilar the datasets, the more the performances will differ according to the

partitioning.225

Cross-validation is one way to solve this problem by evaluating the metrics on all or part of the data partitioning combina-

tions. For our study, we have chosen the k-fold method because it is one of the non-exhaustive cross-validation methods whose

computational cost remains reasonable, with k equal to ten (a common value found in the literature). It consists in randomly

dividing the shuffled data into k sets called folds, each of the folds obtained is used successively to evaluate the metrics and the

others to train the model. Thus the different measurements of the metrics give us access to the calculation of their uncertainty.230

However, ten measurements are not sufficient to obtain an accurate measurement. Iterative cross-validation is a good choice,

for a reasonable computational cost, compared to exhaustive cross-validation methods (e.g., leave-p-out cross validation). It

consists in running independently several times the cross-validation (twenty in our experiments). The expected value and the
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uncertainty of the metrics are calculated according to the central limit theorem, with the normality of the distribution of the

means of the measurements computed at each iteration verified by the Shapiro-Wilk statistical test.235

However the principle of random partitioning of the data may cause a bias for our application. Indeed the images coming

from a time series of tracks from the same cyclone can be found in both the training and test datasets. In order to avoid this

problem, we split the data by sampling the years randomly, approaching as much as possible the ratio required for the hold-out

validation and balancing the folds as much as possible for the cross validation. For the iterative cross validation, the partitioning

combinations are calculated in advance in order to guarantee the uniqueness of their composition.240

Moreover, as the variables do not have the same scale of values, the image channels are standardized online, independently

of each other, according to their mean and standard deviation calculated on the current training dataset, just before training the

CNN.

Finally, for the comparison of the metric values, we chose to apply the Kruskal-Wallis statistical test for an alpha level of

1 %, because the Shapiro-Wilk test was negative for most distributions of metric values of our experiments, invalidating the245

use of the Student’s t-test.

4 Results and discussion

4.1 Accuracy and its threshold

Accuracy is a convenient measure, but according to Provost et al. (1997) and Ling et al. (2003), the class threshold makes it non-

objective. In order to provide further evidence of this problem, we study the distribution of the classifier’s predictions using the250

hold-out method. Rather than applying it on a single set of images, we identically partitioned the four sets of images and trained

and tested the classifier for all possible combinations. Figure 6 shows plots of the distributions as log-scale histograms, colored

according to the ground truth of the images. Then we computed the threshold for which the Youden’s index is optimal (equation

is described at Appendix B6). We seek to maximise J so as to obtain an optimal threshold for which the proportion of total

misclassified results (false positives and false negatives) is minimal. By default, machine learning libraries set the threshold255

to 0.5; however, in our case, the optimal threshold, indicated in the title of each subplot of Fig. 6, is lower than 0.5, and for

some combination of training and testing datasets, even much lower (e.g., ERA5/MERRA-2 combination in 16px@0.5). This

reflects the fact that i) the image sets are not balanced and ii) the number of false negatives (orange color on the left side) is

larger than the number of false positives (blue color on the right side) for this particular partitioning.

Our set of experiments shows that the choice of the threshold value depends on the partitioning, the source of the data and260

the relative importance given to false negatives and false positives. While accuracy is a less interesting metric than AUC and

AUPRC, we decided to keep it, as a matter of information, and set its threshold to 0.5.
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Figure 6. Histograms of the predicted probabilities for “true cyclone” images (orange bars) and background images (blue bars) for different

combinations of training and test datasets and resolution. The optimal decision threshold is indicated in the title of each histogram. Note the

logarithmic scale on the y-axis and that by construction there is twice as many background than cyclone images.

4.2 Metric comparisons

4.2.1 Inter-comparisons

In this section, we focus on the values of the CNN metrics obtained using the iterative cross-validation method on each of265

the image sets described in Table 3. Since the Shapiro-Wilk test shows that the distribution of the mean of the iteration values

is normal for all metrics, under the central limit theorem, we computed the expectation and standard deviation of each of

the metrics, given in Table A4. The values of the metrics are very high, over 0.9, however such values do not mean that a

model is useful. Indeed the usefulness of a model is measured by the difference between its performance and that of models

based on simple rules (e.g., stratified, most frequent class, prior class, uniform or constant) or a domain specific baseline. In270

our study, the classifier performs significantly better than simple models as shown in Fig. 7. By plotting the values of the

metrics on Fig. 8, we can see that although very close, the performances of the CNN are grouped according to their original

dataset (MERRA-2 and ERA5) and that the performances of these two groups seem significantly different. In order to have an

objective confirmation, we chose to compare the values of the metrics using the Kruskal-Wallis test, as the distributions of the

metric values are not mostly normal (see Table A4). Table A5 summarizes the pairwise comparison of the metric performances275

according to the image set used and confirms our interpretation of the Fig. This experiment tells us that the difference between
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Figure 7. Metric values showing the performances of the CNN versus simple classifiers for the four datasets. The color of the symbols for

the metric values computed from the simple models is orange while that of the CNN is blue. The marker shapes indicate the nature of the

metric as per the legend.

the metric values computed from the same dataset, interpolated and not interpolated, can be attributed to randomness. Whereas

the metrics computed from different dataset are quite distinct. So in our study, we can say that the interpolation does not impact

the model performance and training with interpolated datasets has some meaning. At last, we observe that the values of the

metrics from ERA5 are greater than those from MERRA-2.280

4.2.2 Cross-comparisons

In this section we are interested in the values of the metrics of the CNN trained on one image set and tested on the other

image set with the same properties (image resolution and size). In the same way as the previous experiment, we computed the

expectation and standard deviation for each of the metrics, given in Table A6, and then compared the performance obtained

previously (training and testing with the same image set) with these values (training and testing with a different image set).285

Figure 9 gives the graphical representation and Table A7 gives the result of the Kruskal-Wallis tests. This experiment shows

us that regardless of the resolution experienced and the dataset used for model training, the metric values are statistically well

distinct and the value of the metrics evaluated on the ERA5 dataset is greater than that evaluated on the MERRA2 dataset. Thus

we can conclude that the ERA5 dataset is more information rich than the MERRA-2 dataset for the classification of cyclone

images using our CNN.290

4.3 Misclassified images

Following the comparison of the metrics, we took a closer look at the metadata of the images misclassified by the CNN. Ta-

ble A8 in the Appendix summarizes the number of false alarms for each combination of training and testing datasets discussed

in Section 4.1. We studied the metadata of the failed predictions that are common to all training/testing datasets so as to limit
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Figure 8. Box plots of the accuracy, the AUC and the AUPRC metric values for the CNN for the four image sets. The models are tested

against the same image set as they are trained against (e.g., era5_32 means the CNN was trained and tested on ERA5 native).

the study to the most significant cases. We also contextualize the misclassified images in the HURDAT2 time series. There is295

a total of 15 false alarms in common, i.e. seven false positives (background images wrongly classified as cyclones) and eight

false negatives (cyclone images wrongly classified as background). However, we found that the false negatives and the false
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Figure 9. Box plots of the accuracy, the AUC and the AUPRC metric values for the CNN for different combinations of training and test

image sets. In blue, the models are tested against the same image set that they are trained against. In purple, the models are tested against the

other image set of the same resolution (e.g., era5_32/merra2_32 means the CNN was trained on ERA5 native and tested against MERRA-2

32px@0.25).

positives were generated from the tracks of the same cyclones. Thus, after removing the duplicates, there are only eight false

alarms left in common, i.e. seven false positives and one false negative.
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Figure 10. Channels of the image on 5 August 1990, 00:00 UTC centered on 38◦N, 30.625◦W, taken as an example of a wrongly classified

image as a cyclone (false positive).

4.3.1 False Positives300

First, we studied the false positives and have listed them in Table A9. For each image, we gave their HURDAT2 status (see

Table A1) as well as the average probability given by the CNN for each dataset (mean prob column). For each of the false

positives, we verified if there was a cyclone close in the past and in the future, by querying the HURDAT2 database and

indicated the number of hours that separate them from a referenced cyclone (status HU or TS; respectively the past and future

columns). What we can already observe is the high value of the mean probability and its low standard deviation: the CNN is305

wrong with high confidence for these images whatever the dataset used, which confirms the relevance of the failed predictions

in common. Then, we notice that these images are temporally close to a TC by an average of 131 hours, approximately five

days and a half (in the past or in the future). Thus we deduced that the false positives are essentially linked to transition states

leading to a cyclone or to its dissipation. Figure 10 gives a graphical example of one of these false positives for the ERA5 and

MERRA-2 image sets.310

4.3.2 False negative

We have list the single example of false negative that the training/testing datasets have in common, in Table A10 and we give a

graphical example in Fig. 11. The image refers to a cyclone which status is TS and we give its mean probability and standard

deviation computed by the CNN for each dataset. We computed the lifetime of cyclonic activity near the geographical area of

this image, as previously by querying the HURDAT2 database and indicated the number of hours that separate this image from315

the first track of a cyclone in the area. We observe that the probability is very low that means that the CNN is wrong with high

confidence and the low standard deviation of this probability means that this false negative classification is relevant for all the

combination of training/testing datasets. We also notice that this image is temporally close to a tropical depression, six hours

in the future, suggesting that this false negative is essentially linked to the dissipation of a stationary cyclone.
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Figure 11. Channels of the image on 6 August 1990 06:00 UTC, centered on 27◦N, 46.875◦W, taken as an example of a wrongly classified

image as background (false negative).

4.4 Potential future work320

We have chosen a binary approach for the classification, but it is quite possible to design a classifier predicting the HURDAT2

status of the images presented to it (using nine neurons with the soft max activation function for the last layer of the CNN).

However, training such a classifier would probably face an acute problem of image set imbalance. Indeed, four classes out

of nine have a number of occurrences smaller than 400 (Fig. ). To improve the situation, it would be possible to merge some

classes between them (WV with DB and SD with SS) in order to mitigate the problem.325

Our intercomparison experiments have shown that linear interpolation does not affect the performances of the classifier.

However, there are other interpolation methods like bilinear, cubic, bicubic, nearest neighbor, etc. It would be interesting to

verify if these interpolation methods have any effect on the performance of the classifier.

Some transfer learning experiments would also be interesting to conduct. For example, instead of training the CNN with

randomly initialized weight values, training the CNN on one image set with weight values initialized with those of the CNN330

trained on the other image set with the same properties could improve the performance of the CNN.

Finally, pixel attribution experiments (saliency maps) should give us the importance of each variable, with hints on a pos-

sible reduction of their number or on the use of composite variables such as vorticity. These experiments could also give

explanations on misclassified images. Occlusion - perturbation based methods like local surrogate (LIME; Ribeiro et al. 2016),

Shapley values (SHAP; Lundberg and Lee 2017), and gradient based methods like Grad-CAM (Selvaraju et al., 2017) should335

be resourceful.

5 Conclusions

In this study, we have adapted and tested a CNN for the classification of images according to the presence or absence of tropical

cyclones. The image sets for training and tests were built from the ERA5 and MERRA-2 reanalyses with labels derived from

the HURDAT2 dataset. We have paid a lot of attention on the design of the background image set to make sure it samples340
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Table A1. HURDAT2 cyclone categories/status

Two-letter code Storm status and Meaning

HU Tropical cyclone of hurricane intensity (> 64 knots)

TS Tropical cyclone of tropical storm intensity (34-63 knots)

TD Tropical cyclone of tropical depression intensity (< 34 knots)

EX Extratropical cyclone (of any intensity)

SD Subtropical cyclone of subtropical depression intensity (< 34 knots)

SS Subtropical cyclone of subtropical storm intensity (> 34 knots)

LO A low that is neither a tropical cyclone, a subtropical cyclone, nor an extratropical cyclone (of any intensity)

WV Tropical Wave (of any intensity)

DB Disturbance (of any intensity)

similar location and time to the TC-containing image. We have assessed the performance of the CNN using accuracy but also

the more objective AUC and AUPRC metrics. We have shown that failed classifications may be explained by the meteorological

context. In particular false positives often represent a situation with cyclonic activity but not yet classified as TC by HURDAT2.

It should be relatively easy to diagnose those situations if the TC are tracked in time rather than dealt with as a set of separate

independent images as it is the case in this study. We have further shown that interpolation (from 0.5◦ to 0.25◦ or from 0.25◦ to345

0.5◦) does not impact the performance of the CNN. Applying an ERA5-trained CNN on MERRA-2 images works better than

applying a MERRA-2 trained CNN on ERA5 images, which suggests that ERA5 has a larger information content. This study

paves the way for automatic detection of TC in climate simulations without the need to retrain the CNN for each new climate

model or climate model resolution.

Code and data availability. The image sets computed from ERA5 and MERRA-2, their metadata, HURDAT2 data and the code used350

in this work (experiments and NXTensor) are all available at this address: https://doi.org/10.5281/zenodo.6453070 (DOI: 10.5281/zen-

odo.6453070). The code is open source and distributed under the CeCILL-2.1 license. More information about HURDAT2, ERA5 and

MERRA-2, including how to download them, is available from https://www.nhc.noaa.gov/data/#hurdat, https://www.ecmwf.int/en/forecasts/

datasets/reanalysis-datasets/era5, https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/, respectively.

Appendix A: Tables355

Appendix B: Equations

TP, TN, FP, FN stand for True Positives, True Negatives, False Positives, and False Negatives, respectively.
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Figure A1. Distribution of the cyclone categories/status computed over the period 1980-2019

Table A2. Data set variables.

Variable ERA5 attribute name MERRA-2 attribute name

sea level pressure msl spl

precipitable water vapor tcwv tqv

northward wind at 10 meters v10 v10m

northward wind at 850 hPa v850 v850

eastward wind at 10 meters u10 u10m

eastward wind at 850 hPa u850 u850

temperature at 200 hPa t200 t200

temperature at 500 hPa t500 t500

B1 Binary classification metrics

The binary classification metrics used in this study are defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(B1)360

Precision =
TP

TP + FP
(B2)

Recall or Sensitivity =
TP

TP + FN
(B3)
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Table A3. Optimal hyperparameter values.

Hyperparameter Value

Loss function Binary cross-entropy

Training metric Loss computed on test set

Maximum number of epoch 100

Early stopping number of epoch 10

Batch size 256

Optimizer Adam

Learning rate 0.0001

Table A4. The estimation of the values of the metrics based on iterative cross-validation. The train and test datasets come from the same

image set (inter-comparison). The column “Shapiro p on means” refers to the p-value of the Shapiro-Wilk test computed on the mean of each

iteration, whereas “Shapiro p on all” refers to the p-value computed on all the values of the metric.

Metric Train dataset Test dataset Estimated mean Estimated std Shapiro p on means Shapiro p on all

Accuracy

ERA5 32px@0.25 same 0.989748 0.002292 0.905230 1.363663e-04

ERA5 16px@0.5 same 0.989547 0.002255 0.991043 9.576093e-08

MERRA-2 32px@0.25 same 0.982276 0.002836 0.269320 2.560784e-04

MERRA-2 16px@0.5 same 0.981858 0.002927 0.902361 3.120732e-06

AUC

ERA5 32px@0.25 same 0.998989 0.000643 0.088747 8.914557e-12

ERA5 16px@0.5 same 0.998936 0.000638 0.506771 2.956014e-11

MERRA-2 32px@0.25 same 0.997114 0.001140 0.017086 3.536823e-14

MERRA-2 16px@0.5 same 0.996904 0.001107 0.239811 7.852716e-14

AUPRC

ERA5 32px@0.25 same 0.998430 0.000811 0.046393 2.159975e-09

ERA5 16px@0.5 same 0.998374 0.000796 0.359663 4.650617e-11

MERRA-2 32px@0.25 same 0.995573 0.001183 0.274620 3.556242e-12

MERRA-2 16px@0.5 same 0.995337 0.001319 0.769673 3.934050e-13

False Alarm =
FP

FP + TN
(B4)

Specificity =
TN

TN + FP
(B5)
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Table A5. Comparisons of metric values of models taken two by two (inter-comparisons). The column “Kruskal p-value” refers to the p-

value of the Kruskal-Wallis test computed on all the values of the metrics. The column “Comparable” indicates whether the null hypothesis

is accepted for a significance level of 1 % (α).

Metric Train/test dataset Train/test dataset Kruskal p-value Comparable

Accuracy

ERA5 32px@0.25/same ERA5 16px@0.5/same 9.173333e-01 True

ERA5 32px@0.25/same MERRA-2 32px@0.25/same 8.451539e-31 False

ERA5 32px@0.25/same MERRA-2 16px@0.5/same 2.367641e-33 False

ERA5 16px@0.5/same MERRA-2 32px@0.25/same 9.721777e-29 False

ERA5 16px@0.5/same MERRA-2 16px@0.5/same 9.251784e-31 False

MERRA-2 32px@0.25/same MERRA-2 16px@0.5/same 5.506329e-01 True

AUC

ERA5 32px@0.25/same ERA5 16px@0.5/same 5.243858e-01 True

ERA5 32px@0.25/same MERRA-2 32px@0.25/same 5.901992e-26 False

ERA5 32px@0.25/same MERRA-2 16px@0.5/same 9.964538e-32 False

ERA5 16px@0.5/same MERRA-2 32px@0.25/same 5.982768e-24 False

ERA5 16px@0.5/same MERRA-2 16px@0.5/same 6.935282e-30 False

MERRA-2 32px@0.25/same MERRA-2 16px@0.5/same 1.174539e-01 True

AUPRC

ERA5 32px@0.25/same ERA5 16px@0.5/same 7.391314e-01 True

ERA5 32px@0.25/same MERRA-2 32px@0.25/same 2.082609e-30 False

ERA5 32px@0.25/same MERRA-2 16px@0.5/same 2.401478e-35 False

ERA5 16px@0.5/same MERRA-2 32px@0.25/same 1.952581e-29 False

ERA5 16px@0.5/same MERRA-2 16px@0.5/same 3.139588e-34 False

MERRA-2 32px@0.25/same MERRA-2 16px@0.5/same 2.450381e-01 True

B2 Youden’s index365

The Youden’s index is defined as:

J = sensitivity + specificity− 1 =
TP

TP + FN
+

TN

TN + FP
− 1 (B6)
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Table A6. The estimation of the values of the metrics based on iterative cross-validation. The train and test datasets come from different

image set but have the same image resolution and size (cross-comparisons). The column “Shapiro p on means” refers to the p-value of the

Shapiro-Wilk test computed on the mean of each iteration, whereas “Shapiro p on all” refers to the p-value computed on all the values of the

metric.

Metric Train dataset Test dataset Estimated mean Estimated std Shapiro p on means Shapiro p on all

Accuracy

ERA5 32px@0.25 MERRA-2 32px@0.25 0.977677 0.003182 0.226578 0.017054

ERA5 16px@0.5 MERRA-2 16px@0.5 0.977721 0.002321 0.786720 0.013096

MERRA-2 32px@0.25 ERA5 32px@0.25 0.986523 0.002604 0.073408 0.193609

MERRA-2 16px@0.5 ERA5 16px@0.5 0.986655 0.002943 0.540750 0.019739

AUC

ERA5 32px@0.25 MERRA-2 32px@0.25 0.995235 0.001789 0.762134 5.846574e-09

ERA5 16px@0.5 MERRA-2 16px@0.5 0.995413 0.001208 0.871147 2.561682e-12

MERRA-2 32px@0.25 ERA5 32px@0.25 0.998357 0.000803 0.719871 1.581214e-12

MERRA-2 16px@0.5 ERA5 16px@0.5 0.998323 0.000929 0.215594 5.414141e-09

AUPRC

ERA5 32px@0.25 MERRA-2 32px@0.25 0.993296 0.001898 0.436782 7.346610e-08

ERA5 16px@0.5 MERRA-2 16px@0.5 0.993437 0.001331 0.905712 2.634040e-11

MERRA-2 32px@0.25 ERA5 32px@0.25 0.997537 0.000852 0.825225 2.476906e-09

MERRA-2 16px@0.5 ERA5 16px@0.5 0.997549 0.001092 0.694913 1.416567e-07
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CNRS, Sorbonne Université, Ecole Polytechnique and CNES as well as through national and international grants. The authors acknowledge

funding from the French state aid managed by the ANR under the “Investissements d’avenir” programme with the reference ANR-11-IDEX-

0004-17-EURE-0006 and from the European Union’s Horizon 2020 research and innovation program under grant agreement 101003469 for375

the “eXtreme events: Artificial Intelligence for Detection and Attribution” (XAIDA) project.

24

https://doi.org/10.5194/egusphere-2022-147
Preprint. Discussion started: 19 April 2022
c© Author(s) 2022. CC BY 4.0 License.



Table A7. The values of the metrics from models trained and tested on the same image set, compared to those from models trained on

one image set and tested on the other (cross-comparison). The column “Kruskal p-value” refers to the p-value of the Kruskal-Wallis test

computed on all the values of the metrics. The column “Comparable” indicates whether the null hypothesis is accepted for a significance

level of 1 % (α).

Metric Train/test dataset Train/test dataset Kruskal p-value Comparable

Accuracy

ERA5 32px@0.25/same ERA5 32px@0.25/MERRA-2 32px@0.25 4.857791e-47 False

ERA5 16px@0.5/same ERA5 16px@0.5/MERRA-2 16px@0.5 1.005262e-44 False

MERRA-2 32px@0.25/same MERRA-2 32px@0.25/ERA5 32px@0.25 1.825678e-11 False

MERRA-2 16px@0.5/same MERRA-2 16px@0.5/ERA5 16px@0.5 1.434371e-14 False

AUC

ERA5 32px@0.25/same ERA5 32px@0.25/MERRA-2 32px@0.25 4.011721e-46 False

ERA5 16px@0.5/same ERA5 16px@0.5/MERRA-2 16px@0.5 2.698731e-43 False

MERRA-2 32px@0.25/same MERRA-2 32px@0.25/ERA5 32px@0.25 7.645103e-09 False

MERRA-2 16px@0.5/same MERRA-2 16px@0.5/ERA5 16px@0.5 2.074129e-12 False

AUPRC

ERA5 32px@0.25/same ERA5 32px@0.25/MERRA-2 32px@0.25 1.640760e-48 False

ERA5 16px@0.5/same ERA5 16px@0.5/MERRA-2 16px@0.5 3.619129e-47 False

MERRA-2 32px@0.25/same MERRA-2 32px@0.25/ERA5 32px@0.25 3.864565e-12 False

MERRA-2 16px@0.5/same MERRA-2 16px@0.5/ERA5 16px@0.5 1.332830e-16 False

Table A8. Statistics of failed predictions by combinations of training/testing datasets.

Training dataset Test dataset Specs Total failed False negatives False positives

ERA5 ERA5 32px@0.25 68 (0.88 %) 44 24

ERA5 MERRA-2 32px@0.25 156 (2.02 %) 125 31

ERA5 ERA5 16px@0.5 73 (0.94 %) 46 27

ERA5 MERRA-2 16px@0.5 155 (2.00 %) 128 27

MERRA-2 MERRA-2 32px@0.25 110 (1.42 %) 73 37

MERRA-2 ERA5 32px@0.25 93 (1.20 %) 58 35

MERRA-2 MERRA-2 16px@0.5 100 (1.29 %) 52 48

MERRA-2 ERA5 16px@0.5 90 (1.16 %) 40 50
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Table A9. Background images wrongly classified as TC-containing images (false positives) for all combinations of training/testing datasets.

For each image we also indicate the status of the image according to HURDAT2 if present in the database (“None” if not present), the

probability of the classification (with its standard deviation across the combinations of training/testing datasets), and the temporal distance

to a cyclone in the past and in the future (with the status of the cyclone).

#index Status Mean prob Past (hours) Future (hours) HURDAT2 id

207 SD 0.9905±0.0205 8250 (HU) 90 (TS) AL061990

3149 None 0.8819±0.0544 1308 (TS) 354 (TS) AL122008

4163 WV 0.9919±0.0150 174 (TS) 228 (TS) AL092012

6048 None 0.8240±0.1111 132 (TS) 54 (TS) AL071998

6059 EX 0.9963±0.0047 228 (TS) 96 (TS) AL132018

6295 None 0.8918±0.1072 162 (HU) 60 (HU) AL132003

6836 None 0.9216±0.0542 168 (TS) 90 (TS) AL162000

Table A10. The single TC-contaning image wrongly classified as background (false negative) for all combinations of training/testing datasets.

The status of the image according to HURDAT2, the probability of the classification (with its standard deviation across the combinations of

training/testing datasets) are indicated. The columns past and future reflect the cyclonic activity in the geographical area of the image, i.e.

the temporal distance to the first and the last tracks of the cyclone (and their HURDAT2 status).

#index Status Mean prob Past (hours) Future (hours) HURDAT2 id

290 TS 0.0855±0.0665 72 (bckgrd) 6 (TD) AL162000
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